Методы текстурной сегментации аэрокосмических изображений

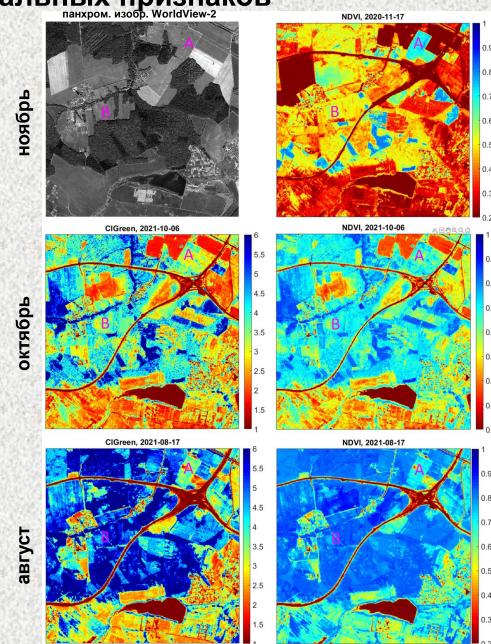
Дмитриев Е.В.

План лекции:

- 1. Извлечение текстурных признаков: статистические методы, спектральные методы, CNN
- 2. Некоторые свойства и связи текстурных признаков
- 3. Оптимизация параметров
- 4. Примеры текстурной обработки

Проблемы попиксельной классификации спектральных признаков панхром. изобр. WorldView-2 NDVI, 2020-11-17

Распределение NDVI и CIGreen (Бронницкое лесничество, Московская обл.)


Расчет вегетационных индексов по изображениям Sentinel-2 за различные даты.

Фиолетовыми буквами обозначены участки насаждений травянистых растений:

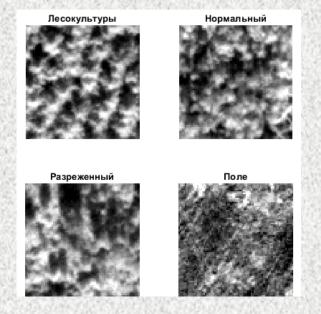
А - культурных

В - естественных.

Можно видеть, что в различные сезоны рассмотренные вегетационные индексы могут принимать схожие значения для участков травянистой и древесной растительности.

Панхроматическое изображение WorldView-2

(пространственное разрешение 0.5 м)


Матричные статистические текстурные признаки

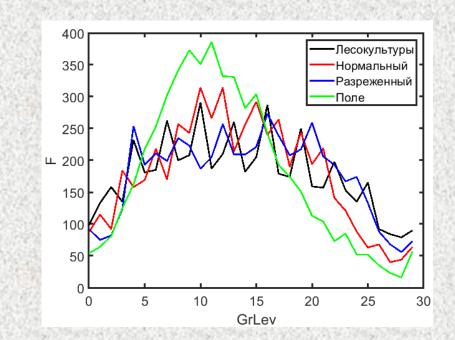
Матрица уровней серого

(Gray-Level Matrix - GLM, характеристики 1-го порядка)

$$I(x, y) \longrightarrow GLM(k) = \#\{(x, y) \mid I(x, y) = k, \quad (x, y) \in L_x \times L_y\} \longrightarrow F_{GLM}(k) = \frac{GLM(k)}{\sum_{k=1}^{N_{gl}} GLM(k)}$$

Функция встречаемости Изображение х уровней серого F(2) = 5/30F(6) = 3/30 $\rightarrow F(7) = 4/30$

Расчет текстурных признаков


$$=\frac{1}{N}\sum_{i=1}^{N_i,N_j}x(i,j)$$

$$d = \frac{1}{N} \sum_{i,j=1}^{N_i, N_j} x^2(i, j)$$

$$S = -\sum_{g} F(g) \log F(g)$$

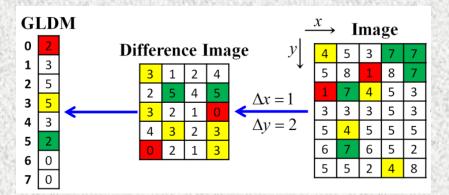
$$E = \sum_{i=1}^{Ng-1} F^2(g)$$

1. Среднее
$$\mu = \frac{1}{N} \sum_{i,j=1}^{N_i,N_j} x(i,j)$$
2. Средний квадрат
$$d = \frac{1}{N} \sum_{i,j=1}^{N_i,N_j} x^2(i,j)$$
3. Энтропия
$$S = -\sum_{g=0}^{N_g} F(g) \log F(g)$$
4. Энергия
$$E = \sum_{g=0}^{N_g-1} F^2(g)$$
5. Дисперсия
$$V = \sum_{g=0}^{N_g-1} (g-\mu)^2 F(g)$$

Матрица разностей уровней серого

(Gray-Level Difference Matrix - GLDM, характеристики 1-го порядка)

Текстурные характеристики <u>1-го порядка</u> также могут быть построены на основе матрицы разностей уровней серого. Пусть I(x,y) - исходное изображение. Выберем вектор смещения по координатам $\delta = (\Delta x, \Delta y)$ и построим изображение разностей по смещению


$$DI_{\Delta x, \Delta y}(x, y) = |I(x, y) - I(x + \Delta x, y + \Delta y)|$$

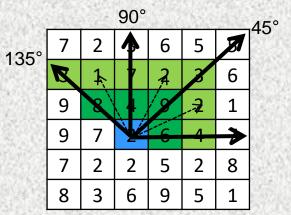
матрицу GLDM:

$$GLDM(k) = \#\{(x, y) \mid DI(x, y) = k, (x, y) \in (L_x - \Delta x) \times (L_y - \Delta y)\}, k = 0,..., N_{gl} - 1$$

и соответствующую ей функцию вероятностей

$$F_{\delta}(k) = \frac{GLDM(k)}{\sum_{k=0}^{N_{gl}-1} GLDM(k)}.$$

Расчет текстурных признаков


Contrast (CON)	$CON = \sum_{i=0}^{N_{gl}-1} i^2 F_{\delta}(i)$
Angular Second Moment (ASM)	$ASM = \sum_{i=0}^{N_{gl}-1} F_{\delta}(i)^2$
Entropy (ENT)	$ENT = -\sum_{i=0}^{N_{gl}-1} F_{\delta}(i) \ln F_{\delta}(i)$
Mean (MN)	$MN = \frac{1}{N_{gl}} \sum_{i=0}^{N_{gl}-1} i F_{\delta}(i)$

<u>Источник:</u> Weszka, J. S., Dyer, C. R., & Rosenfeld, A. (1976). A comparative study of texture measures for terrain classification. IEEE transactions on Systems, Man, and Cybernetics, (4), 269-285.

Матрица совместной встречаемости уровней серого

(GLCM – Gray-Level Co-Occurrence Matrix, характеристики 2-го порядка)

Направление и расстояние смежности

Нормированная GLCM по сути является функцией вероятности распределения совместной встречаемости заданного числа градаций серого

Построение матрицы совместной встречаемости уровней серого

Из	обра	ажен	ние
7	2	3	6
3	1	7	2
9	8	4	9
9	7	2	6
7	2	2	5
8	3	6	9

$$p(i, j) = \frac{GLCM(i, j)}{\sum_{i, j=1}^{N} GLCM(i, j)}$$

	GLCM								
30	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	1	0	0
2	0	1	1	0	1	1	0	0	0
3	1	0	O	O		2	0	0	0
4	0	0	0	0	0	0	0	0	1
5	co	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	1
7	0	4	0	0	0	0	0	0	0
8	0	0	1	1	0	0	0	0	0
9	0	0	0	0	0	0	1	1	0

Пример

Направление смежности — О°

				G	LCM			
	1	2	3	4	5	6	7	8
1	12462	540	178	120	115	74	32	6
2	511	1372	277	133	91	84	27	2
3	190	252	810	552	150	80	48	5
4	173	116	545	5270	1961	153	51	18
5	87	118	167	2004	11663	1048	44	27
6	76	71	79	135	1102	20873	172	43
7	29	28	26	55	94	141	360	84
8	4	3	10	15	46	24	83	171

Альтернативное название - Spatial Gray Level Dependency Matrix (SGLDM)

<u>Источник:</u> Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, (6), 610-621.

Текстурные признаки Харалика

(характеристики 2-го порядка)

Наименование признака	Формула
Автокорреляция (Autocorrelation)	$\sum_{i=1}^{N} \sum_{j=1}^{N} i \cdot j \cdot p(i,j)$
Островершинность (Cluster Prominence)	$\sum_{i=1}^{N} \sum_{i=1}^{N} (i + j - \mu_i - \mu_j)^4 \cdot p(i, j)$
Асимметрия (Cluster Shade)	$\sum_{i=1}^{N} \sum_{j=1}^{N} (i + j - \mu_i - \mu_j)^3 \cdot p(i, j)$
Контраст (Contrast)	$\sum_{i=1}^{N} \sum_{j=1}^{N} (i-j)^{2} \cdot p(i,j)$
Корреляция (Correlation)	$\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i) \cdot (j - \mu_j) \cdot p(i,j) / (\sigma_i \cdot \sigma_j)$
Энтропия разности (Diffrence Entropy)	$-\sum_{k=0}^{N-1} p_{i-j}(k) \cdot \ln p_{i-j}(k)$
Дисперсия разности (Diffrence Variance)	$\sum_{k=0}^{N-1} (k - \mu_{i-j})^2 \cdot p_{i-j}(k)$
Неоднородность (Dissimilarity)	$\sum_{i=1}^{N} \sum_{j=1}^{N} i-j \cdot p(i,j)$
Энергия (Energy)	$\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j)^{2}$
Энтропия (Entropy)	$-\sum_{i=1}^{N}\sum_{j=1}^{N}p(i,j)\cdot \ln p(i,j)$
Однородность (Homogeneity)	$-\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) \cdot \ln p(i,j)$ $\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) / (1+ i-j)$
Однородность2 (Homogeneity2)	$\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) / (1 + (i-j)^{2})$
Первая информационная мера	$(HXY - HXY1) / \max(HX, HY)$
корреляции	
(Information Measure of Correlation 1)	F
Вторая информационная мера	$\sqrt{1-\exp(-2(HXY2-HXY))}$
корреляции (Information Measure of Correlation 2)	
Максимум вероятности (Махітит	may n(i i)
Probability)	$\max_{i,j} p(i,j)$
Среднее суммы (Sum Average)	$\sum_{k=2}^{2N} k \cdot p_{i+j}(k)$
Энтропия суммы (Sum Entropy)	$\sum_{k=2}^{2N} k \cdot p_{i+j}(k) - \sum_{k=2}^{2N} p_{i+j}(k) \cdot \ln p_{i+j}(k)$
Сумма квадратов (Sum Squares)	$\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i)^2 \cdot p(i, j)$
Дисперсия суммы (Sum Variance)	$\sum_{k=2}^{2N} (k - \mu_{i+j})^2 \cdot p_{i+j}(k)$

1) средний индекс

$$\mu_i = \sum_{i=1}^{N} \sum_{j=1}^{N} i \cdot p(i,j), \ \mu_j = \sum_{j=1}^{N} \sum_{j=1}^{N} j \cdot p(i,j);$$

2) среднеквадратичное отклонение (СКО) индекса

$$\sigma_i = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i)^2 \cdot p(i, j)};$$

3) вероятность разности индексов

$$p_{i-j}(k) = \sum_{|i-j|=k} p(i,j);$$

4) вероятность суммы индексов

$$p_{i+j}(k) = \sum_{i+j=k} p(i,j);$$

5) энтропии

$$HX = -\sum_{i=1}^{N} p_x(i) \cdot \ln p_x(i), \ HY = -\sum_{i=1}^{N} p_y(j) \cdot \ln p_y(j),$$

$$HXY = -\sum_{i=1}^{N} \sum_{i=1}^{N} p(i, j) \cdot \ln p(i, j),$$

$$HXY1 = -\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) \cdot \ln \left(p_x(i) \cdot p_y(j) \right),$$

$$HXY2 = -\sum_{i=1}^{N} \sum_{j=1}^{N} p_x(i) \cdot p_y(j) \cdot \ln \left(p_x(i) \cdot p_y(j) \right),$$

где
$$p_{x}(i) = \sum_{j=1}^{N} p(i,j)$$
, $p_{y}(j) = \sum_{i=1}^{N} p(i,j)$.

Матрица совместной встречаемости градиентов серого

(GGCM – Gray (Level-) Gradient Co-Оссиггенсе Matrix, характеристики 2-го порядка)

Рассмотрим исходное изображение I(x, y) как функцию от двух переменных.

Модуль градиента данной функции
$$g(x,y) = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$
 характеризует скорость изменения

тона изображения точке (x,y). В качестве оценки g(x,y) используем оператор Собеля

$$S(x,y) = \sqrt{S_x^2(x,y) + S_y^2(x,y)} \approx g(x,y)$$
 где
$$S_x(x,y) = \left[I(x+1,y-1) + 2I(x+1,y) + I(x+1,y+1)\right] - \left[I(x-1,y-1) + 2I(x-1,y) + I(x-1,y+1)\right]$$

$$S_y(x,y) = \left[I(x-1,y+1) + 2I(x,y+1) + I(x+1,y+1)\right] - \left[I(x-1,y-1) + 2I(x,y-1) + I(x+1,y-1)\right]$$

Таким образом, задав число градаций градиента $L_{\rm g}$, мы можем построить изображение градиентов яркости в пикселях исходного изображения

$$G(i, j) = \operatorname{int}\left[\frac{S(i, j) - S_{\min}}{S_{\max} - S_{\min}}\right] \cdot L_g$$

GGCM строится также как и GLCM, только для изображения G(x,y). Текстурные характеристики 2го порядка вычисляются по нормализованной матрице также как и признаки Харалика

$$p(i, j) = \frac{GGCM(i, j)}{\sum_{i,j=1}^{L_g} GGCM(i, j)}$$

Исходник: Chen, S., Wu, C., Chen, D., & Tan, W. (2009, November). Scene classification based on gray level-gradient co-occurrence matrix in the neighborhood of interest points. In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems (Vol. 4, pp. 482-485). IEEE.

Матрица длин пробега уровней серого

(GLRLM – Gray-Level Run-Length Matrix, характеристики 2-го порядка)

Матрица длин серий (пробега) уровней серого

GLRLM(g, l) представляет собой матрицу GxL, которая содержит число линейных примитивов заданной длины l с яркостью (уровнем серого) д вдоль данного направления (0, 45, 90 или 135).

g - уровень серого (от 1 до G) l - длина пробега уровня серого (от 1 до L)

Матрица может быть представлена в виде двумерной функции вероятности

$$P(g,l) = \frac{GLRLM(g,l)}{N_{runs}}$$

румерной функции вероятности
$$P(g,l) = \frac{GLRLM(g,l)}{N_{runs}}$$

$$N_{runs} = \sum_{g=1}^{G} \sum_{l=1}^{L} GLRLM(g,l)$$

общее число серий

Исходник

где

Galloway, M. M. (1975). Texture analysis using gray level run lengths. Computer graphics and image processing, 4(2), 172-179.

Изображение

		<u> </u>	7	1011	
RICE	1	2	3	4	5
	3	3	3	3	3
	2	1	3	3,	1/
	5	5	3/	1,	' 3
	4	2	/1,	4	4

Матрицы GLRLM для 4х направлений

Лпина серии

	900E	-	J 1611 1	u o	PVII	1000
	00	1	2	3	4	5
2	1	5	0	0	0	0
серого	2	3	0	0	0	0
	3	2	1	0	0	
Уровень	4	2	1	0	0	0
Ypc	5	1	0	1	0	0

90

5	0	run lengtn				
	2	0	(1)	0	0	
	3	0	0	0	0	(
	3	3	0	0	0	
	4	0	0	0	0	
	4	0	0	0	0	

9)	됐!!			
0.00	5	0	0	0	0
74,000	3	0	0	0	0
	4	1	\bigcirc	0	0
600000	4	0	0	0	0
SAULE S	4	0	0	0	0

359)	186			
	5	0	0	0	0
	3	0	0	0	0
	2	2	1	0	0
	4	0	0	0	0
	4	0	0	0	0

Признаки на основе Gray-Level Run-Length Matrix

Short-run emphasis (SRE)	$SRE = \sum_{g=1}^{G} \sum_{l=1}^{L} \frac{P(g,l)}{l^2}$	Run percentage (RP)	$RP = \frac{N_{runs}}{N_p}$
Long-run emphasis (LRE)	$LRE = \sum_{g=1}^{G} \sum_{l=1}^{L} P(g, l) l^{2}$	Short-run low gray- level emphasis (SRLGE)	$SRLGE = \sum_{g=1}^{G} \sum_{l=1}^{L} \frac{P(g,l)}{l^2 g^2}$
Low gray-level run emphasis (LGRE)	$LGRE = \sum_{g=1}^{G} \sum_{l=1}^{L} \frac{P(g,l)}{g^{2}}$	Long-run high gray- level emphasis (LRHGE)	$LRHGE = \sum_{g=1}^{G} \sum_{l=1}^{L} P(g,l) l^{2} g^{2}$
High gray-level run emphasis (HGRE)	$HGRE = \sum_{g=1}^{G} \sum_{l=1}^{L} P(g, l) g^{2}$	Short-run high gray- level emphasis (SRHGE)	$SRHGE = \sum_{g=1}^{G} \sum_{l=1}^{L} \frac{P(g,l)g^{2}}{l^{2}}$
Gray-level nonuniformity (GLNU)	$GLNU = \sum_{g=1}^{G} \left[\sum_{l=1}^{L} P(g,l) \right]^{2}$	Long-run low gray- level emphasis (LRLGE)	$LRLGE = \sum_{g=1}^{G} \sum_{l=1}^{L} \frac{P(g,l)l^{2}}{g^{2}}$
Run-length nonuniformity (RLNU)	$RLNU = \sum_{l=1}^{L} \left[\sum_{g=1}^{G} P(g,l) \right]^{2}$		

Где
$$P(g,l) = \frac{GLRLM(g,l)}{N_{runs}}$$
 $N_{runs} = \sum_{g=1}^{G} \sum_{l=1}^{L} GLRLM(g,l)$ N_{p} - число пикселей исходного изображения (или число возможных серий длины 1)

Уровни серого начинаются с 1

Barry, B., Buch, K., Soto, J. A., Jara, H., Nakhmani, A., & Anderson, S. W. (2014). Quantifying liver fibrosis through the application of texture analysis to diffusion weighted imaging. *Magnetic resonance imaging*, 32(1), 84-90.

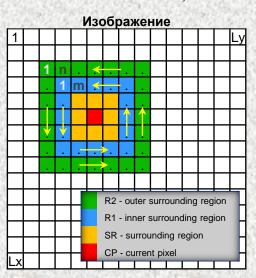
Матрица зависимости окружений

(SRDM – Surrounding Region Dependency Matrix, характеристики 2-го порядка)

Матрица SRDM(q) представляет собой двумерную гистограмму, которая показывает количество пикселей исходного изображения I(x,y), для которых во внутреннем (R1) и внешнем (R2) окружении яркость определенного количества пикселей строго меньше яркости центрального пикселя на заданный порог q. SRDM имеет размер (m+1)x(n+1) и может быть представлена как

$$SRDM(q) = [\alpha(i, j)], \quad 0 \le i \le m, 0 \le j \le n$$

где


$$\alpha(i,j) = \#\{(x,y) \mid C_{R1}(x,y) = i \quad \& \quad C_{R2}(x,y) = j, \quad (x,y) \in L_x \times L_y \}$$

$$C_{R1}(x, y) = \#\{(k, l) \mid (k, l) \in R1 \quad \& \quad [I(x, y) - I(k, l)] > q\}$$

$$C_{R2}(x, y) = \#\{(k, l) | (k, l) \in R2 \& [I(x, y) - I(k, l)] > q\}$$

Знак # означает число элементов множества.

Выбор порогового значения q определяет чувствительность к малым градиентам яркости. При малых пороговых значениях усиливается случайный шум, а при больших - тонкие элементы текстуры будут потеряны.

Расчет текстурных признаков

m=16 (число пикселей R1) n=24 (число пикселей R2)

$$r(i,j) = \begin{cases} \frac{1}{\alpha(i,j)}, & \alpha(i,j) > 0 \\ 0, & \alpha(i,j) \le 0 \end{cases}$$

$$N = \sum_{i=0}^{m} \sum_{j=0}^{n} \alpha(i,j)$$

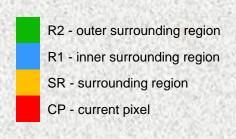
Horizontal Weighted Sum (HWS)	$HWS = \frac{1}{N} \sum_{i=0}^{m} \sum_{j=0}^{n} j^{2} r(i, j)$
Vertical Weighted Sum (VWS)	$VWS = \frac{1}{N} \sum_{i=0}^{m} \sum_{j=0}^{n} i^{2} r(i, j)$
Diagonal Weighted Sum (DWS)	$DWS = \frac{1}{N} \sum_{k=0}^{m+n} k^2 \left(\sum_{\substack{i=0\\i+j=k}}^{m} \sum_{j=0}^{n} r(i,j) \right)$
Grid Weighted Sum (GWS)	$GWS = \frac{1}{N} \sum_{i=0}^{m} \sum_{j=0}^{n} i \cdot j \cdot r(i, j)$

Исходник:

Kim, J. K., & Park, H. W. (1999). Statistical textural features for detection of microcalcifications in digitized mammograms. IEEE transactions on medical imaging, 18(3), 231-238.

Surrounding Region Dependency Matrix

(пример)


Часть изображения - текущий пиксель и окружение

Пороговое значение q = 0, яркость текущего пикселя **170**.

При построении матрицы SRDM пробегаются все пиксели изображения. Для каждого текущего пикселя происходит приращение определенного элемента матрицы SRDM на 1. В текущем примере, пиксели окружения, яркость которых меньше чем яркость текущего пикселя более чем на q уровней (в случае q=0 просто меньше яркости текущего пикселя) выделены желтым. Во внутреннем окружении (R1) таких пикселей 5, а во внешнем (R2) - их 9. Таким образом:

SRDM(5,9) = SRDM(5,9) + 1

173	152	172	173	159	160	160
173	166	165	171	165	164	162
166	173	161	170	172	175	167
177	180	173	170	173	177	176
190	186	178	186	182	187	181
188	187	190	163	190	187	182
199	197	150	169	187	191	189

Приращение матрицы SRDM

100	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Кресто-диагональная текстурная матрица

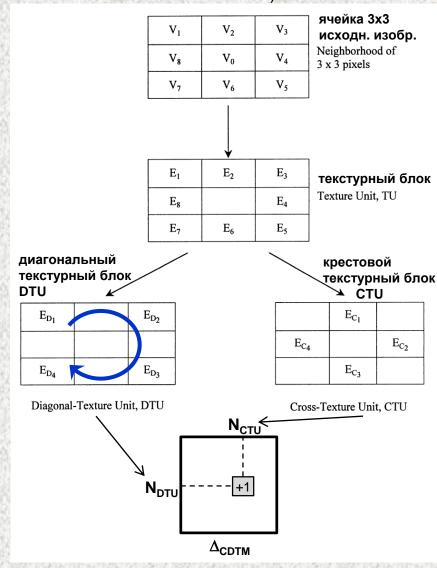
(CDTM – Cross-Diagonal Texture Matrix, характеристики 2-го порядка)

Для построения кресто-диагональной текстурной матрицы (CDTM) рассматриваются все возможные ячейки размером 3x3 на исходном изображении. В каждой ячейке выделяется центральный элемент и строится текстурный блок (texture unit), который в свою очередь подразделяется на диагональный и крестовой текстурные блоки (соответственно, diagonal-texture unit и cross-texture unit).

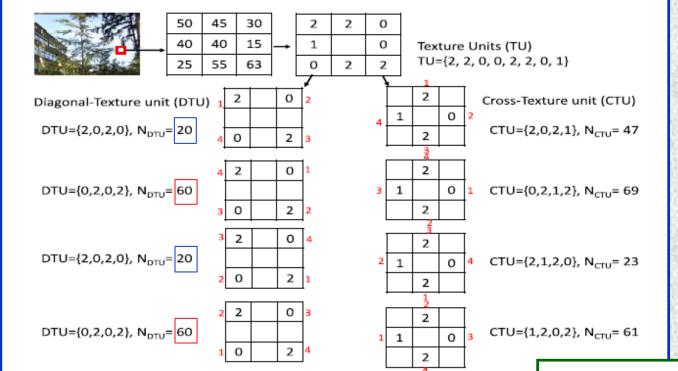
Расчет элементов текстурного блока

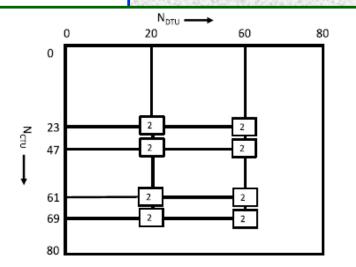
$$E_{i} = \begin{cases} 0 & V_{i} < V_{0} \\ 1 & V_{i} = V_{0} \\ 2 & V_{i} > V_{0} \end{cases}$$

Для блоков CTU и DTU нам необходимо разместить 3 числа (0,1 и 2) в 4 ячейки (всего 3⁴=81 комбинаций). Т.е. по сути указанным блокам мы ставим в соответствие четырехзначное число в троичной системе счисления. Для представления данных чисел в десятичной системе воспользуемся формулами


$$N_{CTU} = \sum_{i=1}^{4} E_{C_i} \cdot 3^{i-1}$$
 $N_{DTU} = \sum_{i=1}^{4} E_{D_i} \cdot 3^{i-1}$

Обход осуществляется по часовой стрелке с четырех начальных положений. Таким образом, для каждого текстурного блока имеем 4 набора чисел N_{CTU} и N_{DTU} , каждая пара которых образует матрицу-приращение Δ_{CDTM} . Матрица CDTM вычисляется как


$$CDTM = \sum \Delta_{CDTM}$$


суммирование идет по всем парам N_{CTU} и N_{DTU} и по всем положениям ячейки 3x3.

Исходник: Al-Janobi, A. (2001). Performance evaluation of cross-diagonal texture matrix method of texture analysis. Pattern Recognition, 34(1), 171-180.

Пример построения CDTM

Признаки на основе CDTM

(характеристики 2-го порядка)

В отличие от GLCM, матрица CDTM не зависит от числа градаций серого и не требует выбора направления и расстояния смежности. При этом масштаб текстуры все же неявным образом учитывается. Так, например при текстурной обработке спутниковых изображений, используемые снимки необходимо сводить к единому выбранному пространственному разрешению. В случае если текстурные элементы являются однородными областями, CDTM будет иметь диагональное преобладание. При возникновения дисбаланса между крестовыми и диагональными блоками, CDTM может быть существенно асимметричной. Чтобы не учитывать последний фактор, можно рассматривать симметричную CDTM:

$$CDTM_{S} = CDTM + CDTM^{T}$$

Нормированные CDTM и CDTM_S могут быть найдены, соответственно, по формулам

$$p(i, j) = \frac{CDTM(i, j)}{\sum_{i, j=0}^{80} CDTM(i, j)}, \qquad p_{S}(i, j) = \frac{CDTM_{S}(i, j)}{\sum_{i, j=0}^{80} CDTM_{S}(i, j)}$$

Вычисление текстурных признаков производится идентичным образом, как и в случае GLCM.

Формула
$\sum_{i=1}^{N} \sum_{j=1}^{N} i \cdot j \cdot p(i,j)$
$\sum_{i=1}^{N} \sum_{j=1}^{N} (i + j - \mu_i - \mu_j)^4 \cdot p(i, j)$
$\sum_{i=1}^{N} \sum_{j=1}^{N} (i + j - \mu_i - \mu_j)^3 \cdot p(i, j)$
$\sum_{i=1}^{N} \sum_{j=1}^{N} (i-j)^{2} \cdot p(i,j)$
$\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i) \cdot (j - \mu_j) \cdot p(i, j) / (\sigma_i \cdot \sigma_j)$
$-\sum_{k=0}^{N-1} p_{i-j}(k) \cdot \ln p_{i-j}(k)$
$\sum_{k=0}^{N-1} (k - \mu_{i-j})^2 \cdot p_{i-j}(k)$
$\sum_{i=1}^{N} \sum_{j=1}^{N} i-j \cdot p(i,j)$
$\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j)^{2}$

ID CONTINUE TO CAMP CONTINUE TO THE PERSON	MANAGEMENT OF THE STATE OF THE
Энтропия (Entropy)	$-\sum_{i=1}^{N}\sum_{j=1}^{N}p(i,j)\cdot \ln p(i,j)$
Однородность (Homogeneity)	$-\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) \cdot \ln p(i,j)$ $\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) / (1+ i-j)$
Однородность2 (Homogeneity2)	$\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) / (1 + (i-j)^{2})$
Первая информационная мера	$(HXY - HXY1) / \max(HX, HY)$
корреляции	
(Information Measure of Correlation 1)	
Вторая информационная мера	$\sqrt{1-\exp(-2(HXY2-HXY))}$
корреляции	V • • • • • • • • • • • • • • • • • • •
(Information Measure of Correlation 2)	
Максимум вероятности (Maximum	$\max_{i,j} p(i,j)$
Probability)	1,1
Среднее суммы (Sum Average)	$\sum_{k=2}^{2N} k \cdot p_{i+j}(k)$
Энтропия суммы (Sum Entropy)	$-\sum_{k=2}^{2N} p_{i+j}(k) \cdot \ln p_{i+j}(k)$
Сумма квадратов (Sum Squares)	$\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i)^2 \cdot p(i, j)$
Дисперсия суммы (Sum Variance)	$\sum_{k=2}^{2N} (k - \mu_{i+j})^2 \cdot p_{i+j}(k)$

1) средний индекс
$\mu_i = \sum_{i=1}^{N} \sum_{j=1}^{N} i \cdot p(i,j), \ \mu_j = \sum_{i=1}^{N} \sum_{j=1}^{N} j \cdot p(i,j);$
2) среднеквадратичное отклонение (СКО) индекса
$\sigma_i = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i)^2 \cdot p(i, j)};$
3) вероятность разности индексов
$p_{i-j}(k) = \sum_{ i-j =k} p(i,j) ;$
4) вероятность суммы индексов
$p_{i+j}(k) = \sum_{l+j=k} p(i,j) \; ; \;$
5) энтропии
$HX = -\sum_{i=1}^{N} p_x(i) \cdot \ln p_x(i), \ HY = -\sum_{j=1}^{N} p_y(j) \cdot \ln p_y(j),$
$HXY = -\sum_{i=1}^{N} \sum_{j=1}^{N} p(i, j) \cdot \ln p(i, j),$
$HXY1 = -\sum_{i=1}^{N} \sum_{j=1}^{N} p(i, j) \cdot \ln(p_x(i) \cdot p_y(j)),$
$HXY2 = -\sum_{i=1}^{N} \sum_{j=1}^{N} p_x(i) \cdot p_y(j) \cdot \ln(p_x(i) \cdot p_y(j)),$

где $p_{x}(i) = \sum_{i=1}^{N} p(i,j), p_{y}(j) = \sum_{i=1}^{N} p(i,j).$

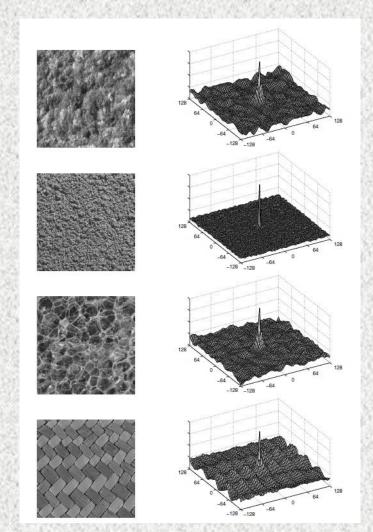
Признаки на основе функции автокорреляции

Пусть I(i,j) - изображение размером Ni x Nj

$$\rho(x,y) = \frac{\frac{1}{(Ni-|x|)(Nj-|y|)} \sum_{i=Si}^{Ei} \sum_{j=Sj}^{Ej} I(i,j)I[(i+x),(j+y)]}{\frac{1}{NiNj} \sum_{i=1}^{Ni} \sum_{j=1}^{Nj} I^{2}(i,j)}$$

Пределы суммирования

	Si	Ei	Sj	Ej
$x \ge \theta \ y \ge \theta$	1	Ni-x	1	Nj-y
<i>x</i> ≥0 <i>y</i> <0	1	Ni-x	1-y	Nj
<i>x</i> <0 <i>y</i> ≥0	1-x	Ni	1	Nj-y
x<0 y<0	1-x	Ni	1-у	Nj

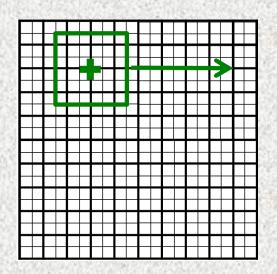

Для извлечения признаков вычисляются:

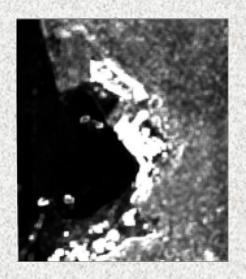
1) маржинальные признаки

$$\rho_x(x) = \sum_{y} \rho(x, y)$$
 и $\rho_y(y) = \sum_{y} \rho(x, y)$

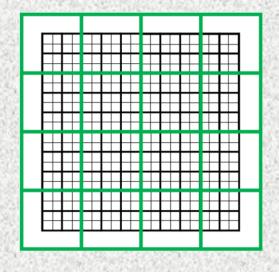
- 2) секторальные признаки (направленность) сумма $\rho(x, y)$ попадающих в угловой сектор
- 3) радиальные признаки (масштаб ячеек текстуры) сумма $\rho(x,y)$ попадающих в кольцо
- 4) энергетические признаки (затухание) описывает резкость пика в окне *H*

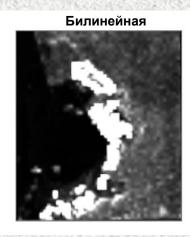
$$E = \sum_{x=-H}^{H} \sum_{y=-H}^{H} \rho^{2}(x, y)$$

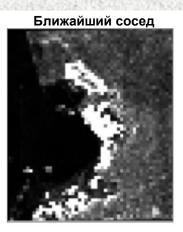

Приложения:


Zhu D, Pan R, Gao W, Zhang J (2015) Yarn-dyed fabric defect detection based on autocorrelation function and GLCM. Autex Res J 15(3):226–232

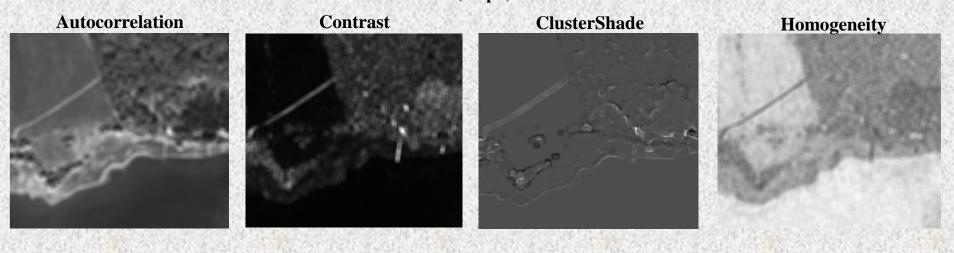
J. T. Cobb and J. Principe, "Autocorrelation features for synthetic aperture sonar image seabed segmentation," in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2011, pp. 33413346.

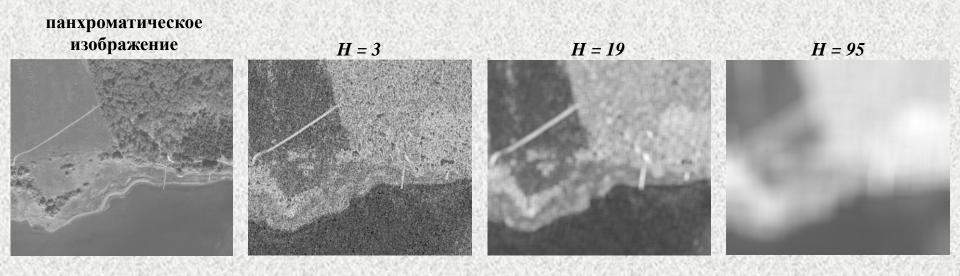

Извлечение текстурных признаков

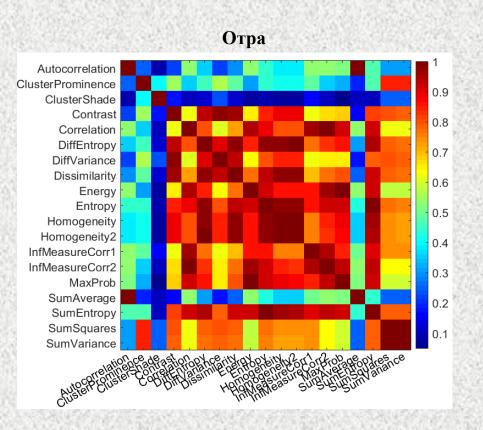

при совместной обработке многоспектральных и панхроматических изображений Метод скользящего окна

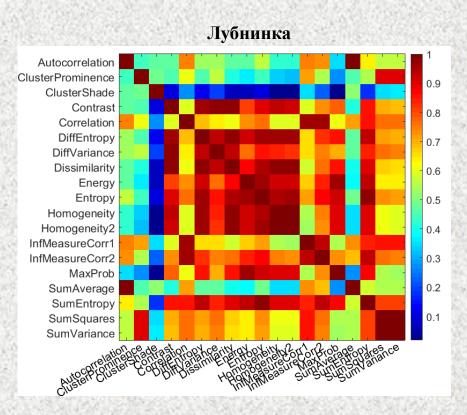


Расчет на сетке с последующей интерполяцией






Изображения некоторых статистик Харалика (Отра)



Признак Dissimilarity при различных размерах скользящего окна (H)

Матрицы модулей корреляции текстурных признаков

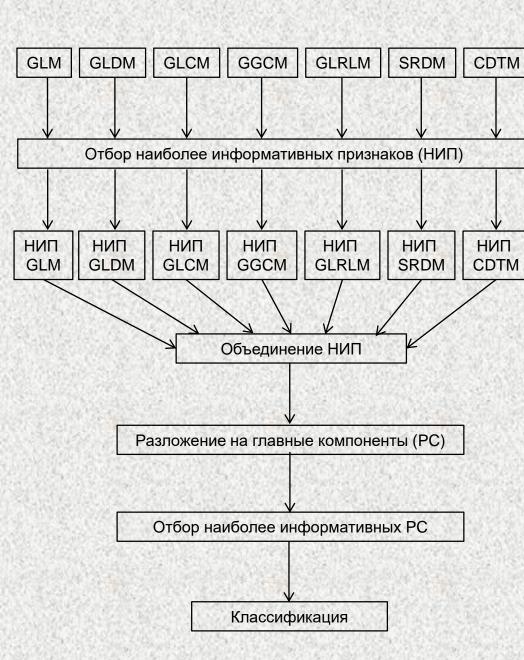
35% рассматриваемых признаков имеют взаимные корреляции более 0.8 для обоих участков. Связь между такими переменными в первую очередь объясняется способом их построения.

Относительно небольшая часть признаков имеет слабо выраженную взаимную зависимость. Корреляцию менее 0.5 имеют 30% признаков для участка Отра и 25% для участка Лубнинка, а корреляцию менее 0.3 имеют 16% и 8 % признаков, соответственно.

Корреляция текстурных признаков по направлениям

Текстурные признаки GLCM

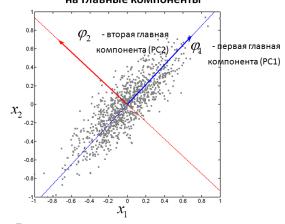
(матрица совместной встречаемости уровней серого)


Признак	$ ho_{ m min}$	$\alpha(\rho_{\min})$	$ ho_{max}$	$\alpha(\rho_{max})$
Autocorrelation	1	90-0	1	135-45
ClusterProminence	0.99	90-0	1	135-90
ClusterShade	0.99	135-45	0.99	135-90
Contrast	0.81	135-45	0.95	135-90
Correlation	0.96	135-45	0.98	135-90
DiffEntropy	0.96	90-0	0.99	135-90
DiffVariance	0.72	135-45	0.94	135-90
Dissimilarity	0.93	90-0	0.97	135-90
Energy	1	90-0	1	135-45
Entropy	1	90-0	1	135-90
Homogeneity	0.96	90-0	0.99	135-90
Homogeneity2	0.96	90-0	0.99	135-90
InfMeasureCorr1	0.94	90-0	0.97	135-90
InfMeasureCorr2	0.98	90-0	0.99	135-45
MaxProb	0.99	90-0	1	90-45
SumAverage	1	90-0	1	135-45
SumEntropy	1	90-0	1	90-45
SumSquares	1	90-0	1	135-45
SumVariance	1	90-0	1	135-90

Текстурные признаки GLRLM

(матрица длин пробега уровней серого)

(матрица длин п Признак	ρ_{\min}	$\alpha(\rho_{\min})$	ρ_{max}	$\alpha(\rho_{\rm max})$
Short-run emphasis (SRE)	0.96	135-45	0.98	135-0
Long-run emphasis (LRE)	0.95	135-45	0.98	135-0
Low gray-level run emphasis (LGRE)	1	90-0	1	135-45
High gray-level run emphasis (HGRE)	1	90-0	1	135-45
Gray-level nonuniformity (GLNU)	0.96	135-45	0.97	135-0
Run-length nonuniformity (RLNU)	1	90-0	1	135-0
Run percentage (RP)	0.96	135-45	0.97	90-0
Short-run low gray-level emphasis (SRLGE)	0.99	90-0	1	135-45
Long-run high gray-level emphasis (LRHGE)	0.99	135-45	1	90-0
Short-run high gray-level emphasis (SRHGE)	1	135-45	1	135-0
Long-run low gray-level emphasis (LRLGE)	1	135-90	1	135-0

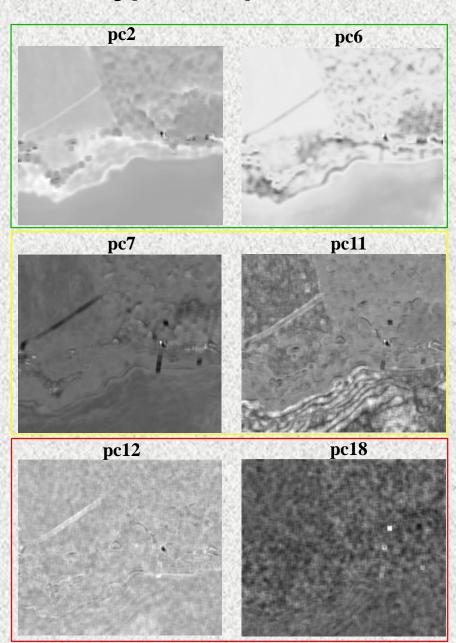

Совместное использование текстурных признаков

Анализ главных компонент (РСА)

$$x = \sum_{i=1}^{N} a_i \varphi^i \longrightarrow x^{(n)} = \sum_{i=1}^{n} a_i \varphi^i$$

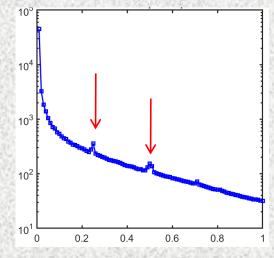
Графическое представление разложения на главные компоненты


Первая главная компонента соответствует направлению наибольшей дисперсии.



Анализ главных компонент текстурных признаков

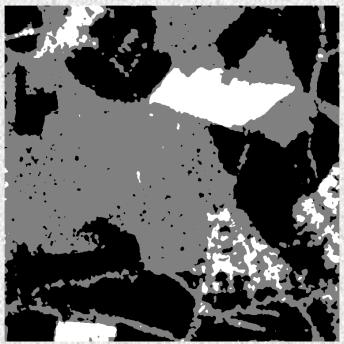
панхроматическое изображение



Спектральные методы

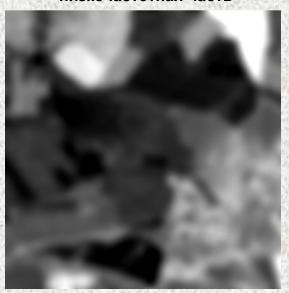
Преобразование Фурье

$$\begin{split} F(u,v) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} \, dx \, dy, \\ f(x,y) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} \, du \, dv \end{split}$$

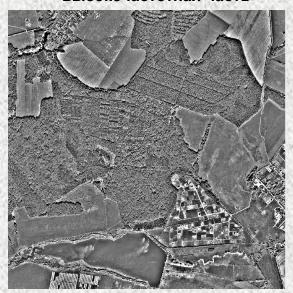

- 1. Преобразование Фурье
- 2. Энергетический спектр
- 3. Фильтрация диапазонов
- 4. Обратное преобразование Фурье
- 5. Размытие Гаусса
- 6. Бинаризация Оцу

Изображение

Сегментация



Частотные составляющие изображения


исходное изображение

низкочастотная часть

высокочастотная часть

Текстурная сегментация с помощью фильтров Габора

Основные этапы

- 1. Предобработка изображения нормализация, подавление шума, выравнивание гистограммы, обработка границ (зеркальное отражение)
- 2. Создание банка фильтров Габора $(\sigma_x = \sigma_y = \sigma)$

$$G(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \exp\left(i2\pi f(x\cos\varphi + y\sin\varphi)\right)$$

различных масштабов ~ $\frac{1}{f}$ и ориентаций φ .

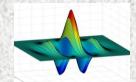
3. Применение фильтров к изображению - свертка изображения с каждым фильтром Габора и получение комплексных откликов действительная часть - структуры

$$R_{real} = I * Re(G)$$

мнимая часть - переходы (или края)

$$R_{imag} = I * \operatorname{Im}(G)$$

4. Извлечение признаков текстуры вычисление энергии для каждого фильтра:


$$E = \sqrt{R_{real}^2 + R_{imag}^2}$$

формирование вектора признаков для каждого пикселя:

$$F(x, y) = [E_1, E_2, ..., E_n]$$

где n = число масштабов × число ориентаций

- 5. Постобработка признаков нормализация, гауссово сглаживание, понижение размерности
- 6. Кластеризация или обучаемая классификация

Scale: 4 Orientation: 0°

Scale: 4 Orientation: 30°

Scale: 4 Orientation: 60°

Scale: 4 Orientation: 90°

Scale: 4 Orientation: 120°

Scale: 4 Orientation: 150°

Scale: 8 Orientation: 0°

Orientation: 30°

Scale: 8 Orientation: 60°

Scale: 8 Orientation: 90°

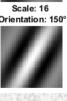
Scale: 8 Orientation: 120°

Orientation: 150°

Scale: 16 Orientation: 0°

Orientation: 30°

Scale: 16 Orientation: 60°


Orientation: 90°

Scale: 16 Orientation: 120°

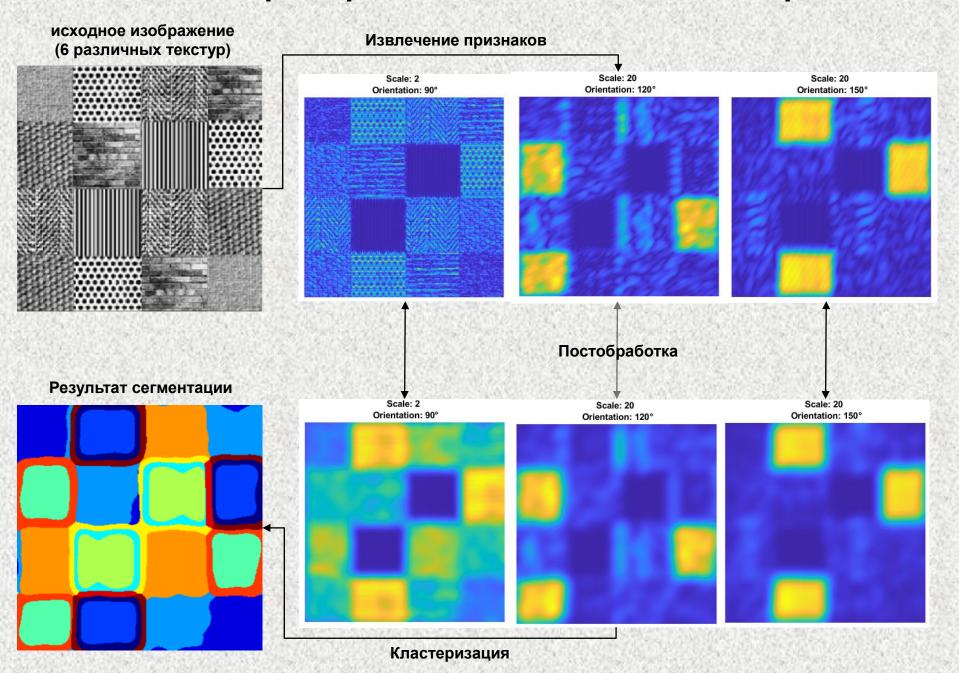
Orientation: 150°

Scale: 32 Orientation: 0°

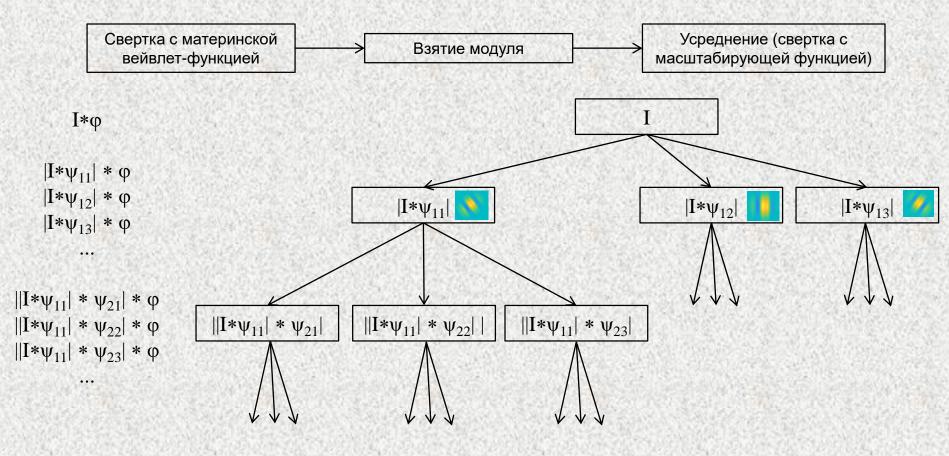
Orientation: 30°

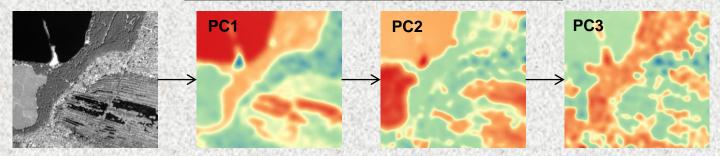
Scale: 32 Orientation: 60°

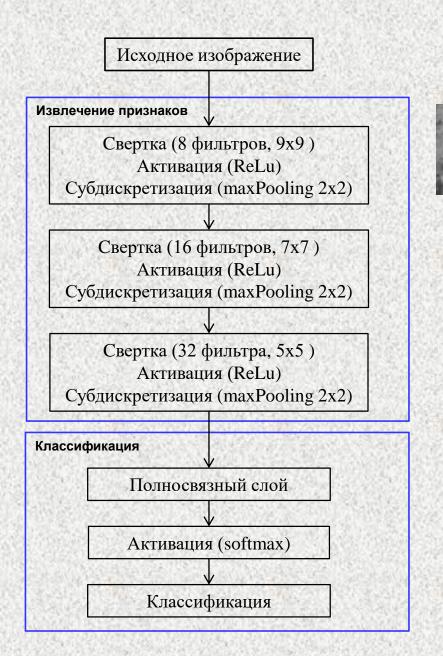
Scale: 32 Orientation: 90°



Scale: 32 Orientation: 120°




Тестовый пример сегментации методом К-средних


Сеть вейвлет-рассеяния изображения

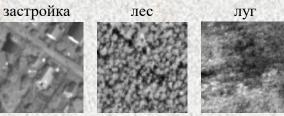
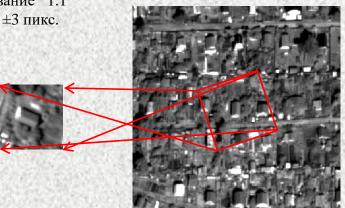

Главные компоненты для 3 уровней рассеяния

Схема текстурной обработки с использованием CNN

Обучающие данные

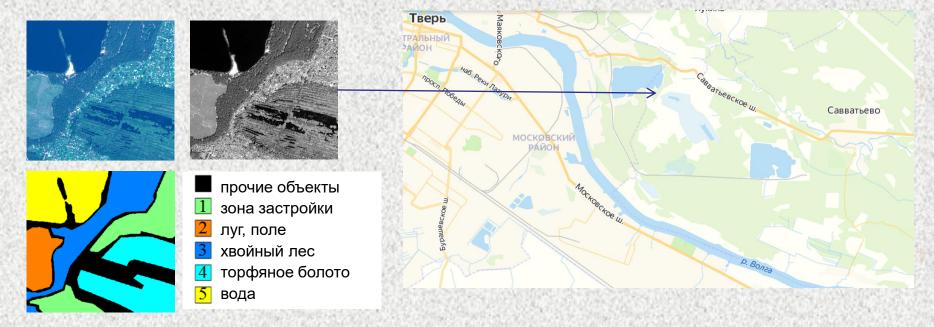
Для извлечения обучающей информации для текстурной обработки строятся векторные карты (полигоны и точки) интересующих нас объектов. При недостатке данных выполняется аугментация.

Аугментация

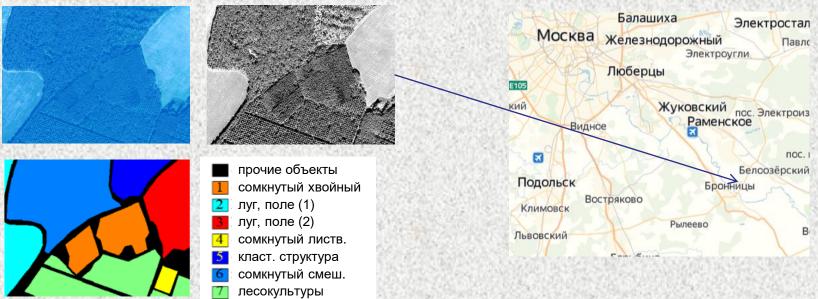

Для аугментации используются изображения большего размера (2х и более). Это позволяет избежать проблем на границах.

Параметры деформаций:

1) вращение 0-360 град.

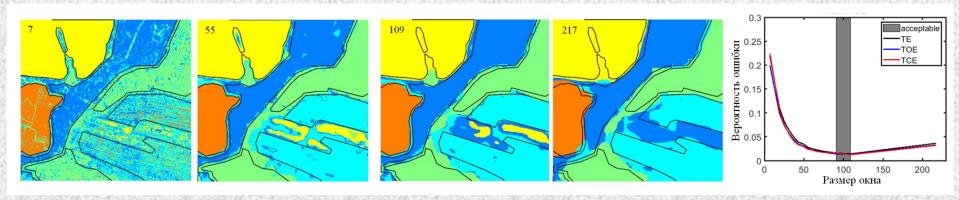

2) сдвиговая деформация 20 град.

3) масштабирование 1.14) трансляция ±3 пикс.

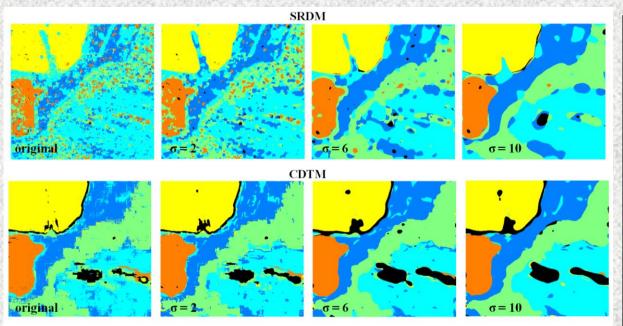


Расположение тестовых участков

Константиновский - основные типы объектов

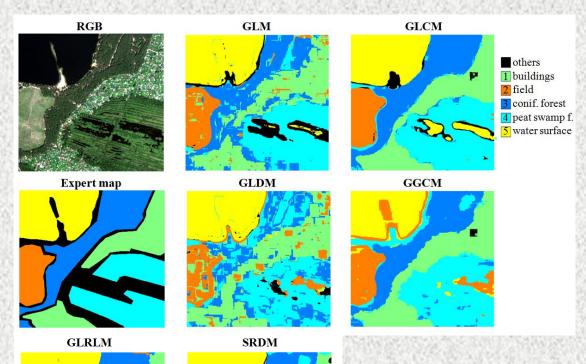


Географические посадки лесничего Дементьева - структуры древостоев



Настройка параметров

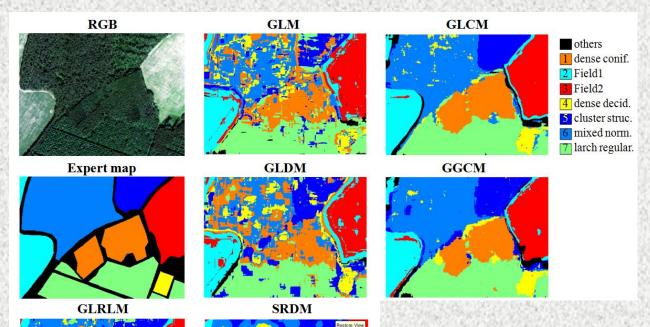
Текстурная классификация при различных размерах скользящего окна



Влияние параметра разброса гауссовского фильтра тестурных признаков

Метод	Без фил	ьтрации		грация (σ=10)
извлече ния призна ков	Перекл Незави симая провер кация		Перекл ассифи кация	Незави симая провер ка
GLM	0.22	0.247	0.142	0.151
GLDM	0.234	0.319	0.107	0.166
GLCM	0.015	0.033	0.005	0.009
GGCM	0.023	0.043	0.006	0.01
GLRL M	0.039	0.046	0.007	0.011
SRDM	0.529	0.553	0.147	0.172
CDTM	0.06	0.09	0.002	0.009

Текстурная сегментация основных типов объектов



Bar ve st	DF EVY	Resub	Indep
	TE	0.10	0.12
GLM	TOE	0.10	0.11
A 00 14 1 1 5 5	TCE	0.10	0.12
	TE	0.25	0.268
GLDM	TOE	0.25	0.253
	TCE	0.25	0.261
	TE	0.01	0.012
GLCM	TOE	0.01	0.012
	TCE	0.01	0.011
	TE	0.068	0.083
GGCM	TOE	0.068	0.079
	TCE	0.066	0.098
	TE	0.034	0.044
GLRLM	TOE	0.034	0.039
	TCE	0.033	0.044
	TE	0.070	0.074
SRDM	TOE	0.070	0.066
	TCE	0.069	0.064
	TE	0.011	0.022
CDTM	TOE	0.011	0.019
	TCE	0.011	0.020

	GF: σ=10
CDTM	
	прочие объекты зона застройки
	2 луг, поле
	3 хвойный лес
	4 торфяное болото
GF: σ=10	<u></u> 5 вода

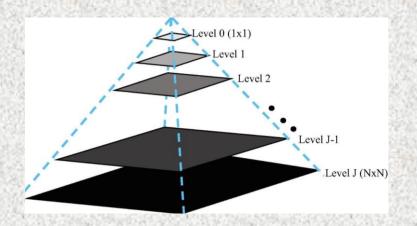
		buildings	field	natural confer f.	peat swamp f.	water surface
CLM	OE	0.089	0.077	0.22	0.15	0.017
GLM	CE	0.22	0.14	0.15	0.09	0
CLDM	OE	0.16	0.215	0.538	0.332	0.0195
GLDM	CE	0.32	0.222	0.432	0.329	0.001
CLCM	OE	0.004	0.015	0.019	0.022	0
GLCM	CE	0.009	0.009	0.017	0.022	0
CCCM	OE	0.012	0.058	0.084	0.097	0.14
GGCM	CE	0.038	0.29	0.05	0.097	0.017
GLRLM	OE	0.021	0.014	0.06	0.098	0
GLKLM	CE	0.103	0.039	0.056	0.02	0
CDDM	OE	0.049	0.023	0.14	0.11	0.0069
SRDM	CE	0.061	0.016	0.11	0.14	0
CDTM	OE	0.004	0.002	0.066	0.023	0
CDTM	CE	0.034	0.004	0.019	0.037	0.005

Текстурная сегментация структур древостоев

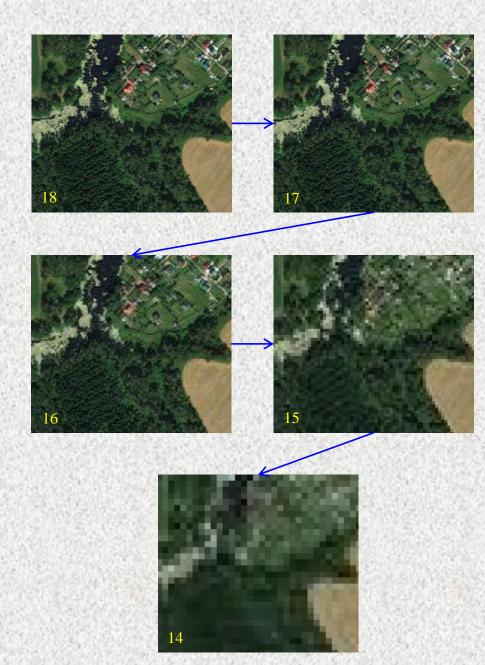
		Resub	Indep
35 (15 At Lat	TE	0.22	0.247
GLM	TOE	0.22	0.243
COLUMN TO SERVICE	TCE	0.218	0.315
	TE	0.234	0.319
GLDM	TOE	0.234	0.250
	TCE	0.239	0.365
	TE	0.015	0.033
GLCM	TOE	0.015	0.026
	TCE	0.015	0.115
	TE	0.023	0.043
GGCM	TOE	0.023	0.033
	TCE	0.023	0.115
	TE	0.116	0.145
GLRLM	TOE	0.116	0.134
	TCE	0.114	0.234
	TE	0.147	0.172
SRDM	TOE	0.147	0.141
	TCE	0.141	0.251
	TE	0.002	0.009
CDTM	TOE	0.002	0.005
	TCE	0.002	0.023

CDTM
GF: σ=10

прочие объекты
сомкнутый хвойный
2 луг, поле (1)
3 луг, поле (2)
Сомкнутый листв.
класт. структура
6 сомкнутый смеш.
лесокультуры


GF: σ=10

		normal confer	field1	field2	dense deciduous	cluster structured	mixed normal	larch regular
CLM	OE	0.275	0.075	0.08	0.376	0.367	0.406	0.123
GLM	CE	0.424	0.123	0.056	0.931	0.462	0.096	0.114
CLDM	OE	0.391	0.148	0.131	0.172	0.212	0.554	0.145
GLDM	CE	0.586	0.205	0.093	0.899	0.477	0.174	0.122
CLCM	OE	0.017	0.018	0.022	0.037	0.005	0.065	0.017
GLCM	CE	0.017	0.039	0.012	0.69	0.025	0.005	0.017
GGCM	OE	0.055	0.046	0.022	0.007	0.011	0.07	0.019
GGCM	CE	0.017	0.046	0.028	0.47	0.22	0.005	0.02
CIDIM	OE	0.18	0.048	0.047	0.18	0.15	0.22	0.11
GLRLM	CE	0.11	0.077	0.031	0.87	0.41	0.045	0.1
SRDM	OE	0.11	0.18	0.094	0.1	0.071	0.25	0.18
	CE	0.006	0.14	0.11	0.83	0.48	0.11	0.075
CDTM	OE	0.006	0	0	0	0.002	0.018	0.013
	CE	0	0.005	0	0.072	0.073	0.004	0.007

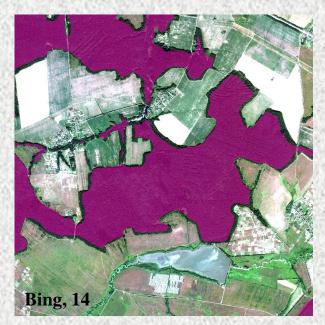

Текстурная сегментация на различных масштабах

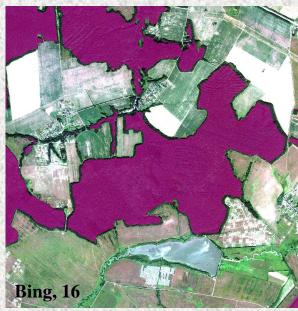
Обрабатываемые изображения:

- 1. Панхроматическое Worldview-2
- 2. Спутниковая карта Bing

All of	Масштаб	Ширина,	Высота,	Размер	Шаг
34.0		px	px	пикселя, м	сетки, рх
	14	605	610	8	5
w2	15	1210	1220	4	9
Worldview2	16	2419	2439	2	17
/orl	17	4838	4878	1	35
	18	9675	9755	0.5	71
Earl X	14	445	449	10.9	5
Bing	15	890	897	5.4	7
	16	1780	1794	2.7	15
	17	3559	3588	1.4	27
	18	7118	7177	0.7	51

Используемые статистические методы и группы признаков

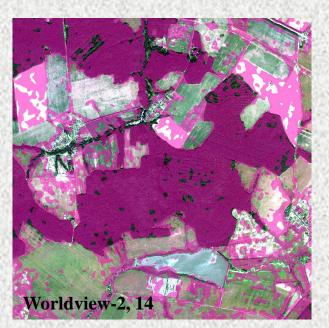

Метод	Число призн.	Параметры	НЧП	ВЧП
GLM (Gray-Level Matrix)	5		Mean $\frac{1}{N}\sum_{i,j=1}^{N_i,N_j}x(i,j)$ MeanSquare $\frac{1}{N}\sum_{i,j=1}^{N_i,N_j}x^2(i,j)$	Energy $\sum_{g=0}^{Ng-1} F^2(g)$
GLCM (Gray-Level Co- Occurrence Matrix)	19	расстояние и направление смежности	Autocorrelation $\sum_{i=1}^{N} \sum_{j=1}^{N} i \cdot j \cdot p(i,j)$ SumAverage $\sum_{k=2}^{2N} k \cdot p_{i+j}(k)$	Entropy $-\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) \cdot \ln p(i,j)$
GGCM (Gray Gradient Co-Occurrence Matrix)	19	расстояние и направление смежности		MaxProb $\max_{i,j} p(i,j)$ Homogeneity $\sum_{i=1}^N \sum_{j=1}^N p(i,j)/(1+ i-j)$
GLRLM (Gray Level Run Length Matrix)	11	направление пробега	HGRE $\sum_{g=1}^{G} \sum_{l=1}^{L} P(g,l)g^2$ SRHGE $\sum_{g=1}^{G} \sum_{l=1}^{L} \frac{P(g,l)g^2}{l^2}$	SRLGE $\sum_{g=1}^{G} \sum_{l=1}^{L} \frac{P(g,l)}{l^2 g^2}$
CDTM (Cross Diagonal Texture Matrix)	19			Correlation $\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i) \cdot (j - \mu_j) \cdot p(i, j) / (\sigma_i \cdot \sigma_j)$


HGRE - High gray-level run emphasis

SRHGE - Short-run high gray-level emphasis

SRLGE - Short-run low gray-level emphasis

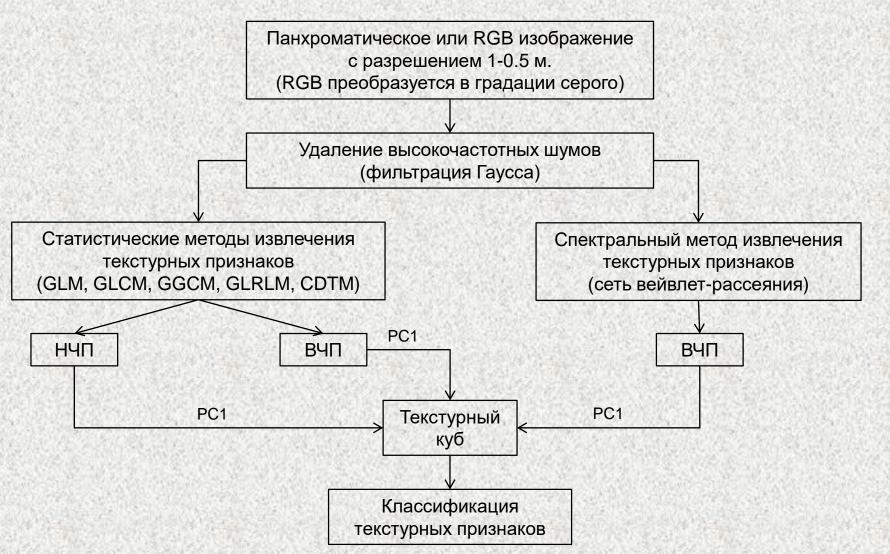
Сегментация древостоев по низкочастотным признакам



Ошибки сегментации на различных масштабах

	Масштаб	TE	TOE	TCE
Worldview2	14	0.224	0.276	0.217
	15	0.189	0.236	0.173
dvie	16	0.121	0.151	0.110
/orl	17	0.107	0.131	0.1
*	18	0.069	0.087	0.059
	14	0.069	0.091	0.054
Bing	15	0.07	0.095	0.052
	16	0.066	0.089	0.049
	17	0.051	0.067	0.041
	18	0.048	0.061	0.041

Сегментация древостоев по высокочастотным признакам



Ошибки сегментации на различных масштабах

	Масштаб	TE	TOE	TCE
Worldview2	14	0.287	0.250	0.263
	15	0.096	0.096	0.107
	16	0.043	0.053	0.040
	17	0.063	0.056	0.072
	18	0.039	0.049	0.034
Bing	14	0.294	0.341	0.317
	15	0.374	0.390	0.394
	16	0.441	0.428	0.433
	17	0.138	0.168	0.131
	18	0.039	0.039	0.045

Схема текстурной обработки с использованием спектральных и статистических методов (TTSPCA)

Сегментация древостоев тестовой территории

(Бронницкое лесничество)

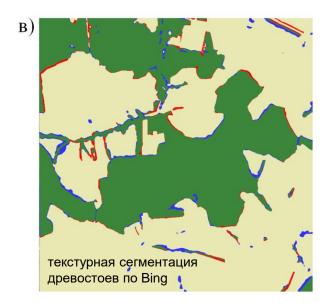
 Γ

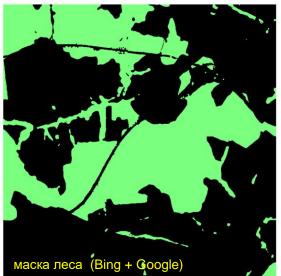
Размер окна

НЧСП - 19 (13 м)


ВЧСП - 39 (26 м) ПВРИ - 39 (26 м)

TE - 3.5%

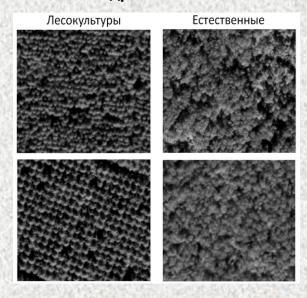

различие TOE TCE 0.3%


естественный уровень ошибок 0.6%

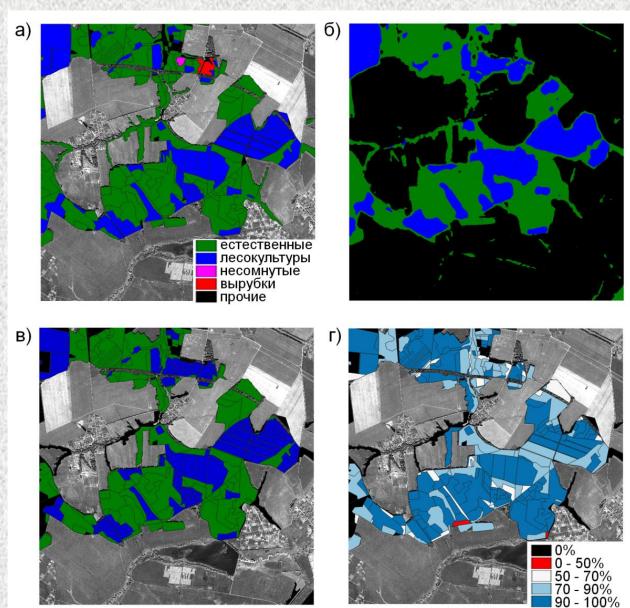
характерная ширина теней на границе 7-8 м (10-12 пикселей)

зеленый – лес, **черный** – прочие объекты

зеленый - лес,


бежевый – прочие объекты,

красный – ошибка первого рода,


синий – ошибка второго рода

Сегментация естественных и искусственных древостоев

Характерные текстуры полога естественных и культурных древостоев

- а) карта наземной лесотаксации,
- б) попиксельная текстурная сегментация,
- в) карта по спутниковой информации,
- г) содержание доминирующей структуры лесного полога.

Текстурная сегментация 5 основных типов объектов различными методами

Для обработки использовалась сшивка из 2х панхроматических изображений Worldview-2 (разрешение 0.5 м)

TTSPCA

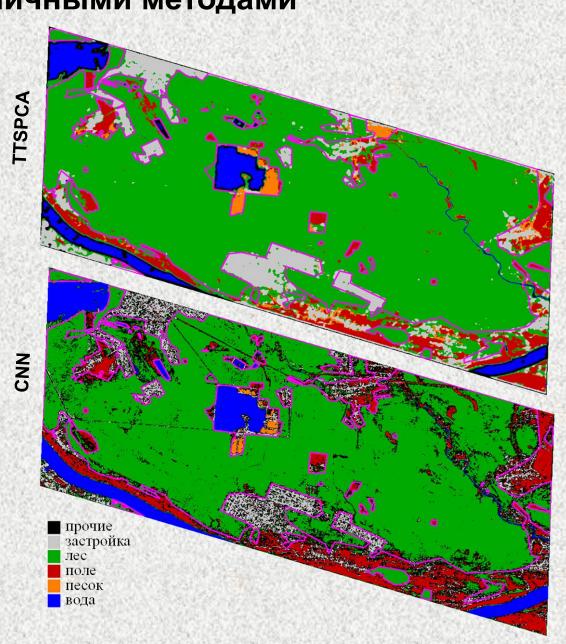
Для обучения использовалось по 1000 наборов признаков на каждый класс. Оценки ошибки сегментации древостоев.

FCNN: TE=5.6%, TOE = 5.3%, TCE=6.1%

KNN: TE=7%, TOE = 6.4%, TCE=7.6%

ECOC SVM: TE=9.3%, TOE = 11.2%, TCE=7.5%

QDA: TE=10.3%, TOE = 12.5%, TCE=8%


CNN

Для обучения использовалось по 2000 наборов признаков на каждый класс: 50% - обучение, 50% - валидация.

Сходимость: $10 \ \text{эпох} - \text{менее } 2\%, \ 30 \ \text{эпох} - \text{менее } 0.5\%$

Оценка ошибки сегментации древостоев.

TE=7.1%, TOE = 7.8%, TCE=7.0%

